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Abstract

CenterPoint [17], a novel 3D outdoor deep detector,
has achieved state-of-the-art performance in multiple au-
tonomous driving detection benchmarks. However, it has
seldom been used in indoor scenes. In this project, we
adapt CenterPoint in indoor scenes and evaluate its perfor-
mance thoroughly. To have a fair comparison, we also con-
duct controlled experiments with indoor-targeted detector
VoteNet [9]. As it turns out, CenterPoint can achieve quite
good detection results in indoor scenes with some modifica-
tions. Besides, we re-define the task 3D relocalization, tar-
geting moving objects given dynamic annotations. Results
show that CenterPoint and VoteNet perform reasonably well
in this task.

1. Introduction
Strong 3D indoor perception is a core ingredient in many

state-of-the-art home intelligent systems. In particular, 3D
object detection in point clouds is an interesting challenge,
the goal of which is to estimate oriented 3D bounding boxes
and semantic classes of objects from point clouds. Com-
pared to images, 3D point clouds provide accurate geom-
etry and robustness to illumination changes. On the other
hand, point clouds are irregular, thus typical CNNs are not
well suited to process them directly.

CenterPoint [17] is one of the most novel methods tar-
geting outdoor point clouds detection. It has shown state-
of-the-art performance in several outdoor detection datasets
including Waymo [15] and nuScenes [2]. However, to our
best knowledge, CenterPoint has seldom been tested in in-
door scenes. In particular, indoor scenes are much smaller
than outdoor scenes, and the sizes of indoor objects are on
average smaller than those of outdoor objects. Besides,
indoor scenes are more crowded. These differences may
bring challenges when adapting outdoor detectors to indoor
scenes.

To this end, we decide to test CenterPoint on two in-
door datasets - 3RScan [8] and ScanNet [5]. Since there are

seldom published detection results on 3RScan, we also test
VoteNet [9], one of the state-of-the-art indoor detectors, on
3RScan so that we can have fair comparisons with Center-
Point. As for ScanNet, many detection results have been
published which can be used for our comparisons directly.
Our study shows that CenterPoint with some modifications
can also perform quite well in indoor-scene detection task.
Apart from 3D detection, we also re-define 3D relocaliza-
tion from [8], where we try to find the correspondence of
moving objects in the same environment of different scans
with known camera calibration matrix. 3RScan provides us
with dynamic annotations of moving objects so we conduct
experiments with both CenterPoint and VoteNet on it. Both
networks have reasonable relocalization results on 3RScan.

In summary, the contributions of our work are:

• Testing and fine tuning VoteNet on 3RScan.

• Testing and fine tuning CenterPoint on 3RScan and
ScanNet.

• Demonstration of feasibility of using CenterPoint in
indoor scenes.

• Conducting re-defined relocalization experiments with
CenterPoint and VoteNet on 3RScan.

2. Related Work
3D object detection. Many previous methods were pro-
posed to detect 3D bounding boxes of objects. [6, 14] ex-
tend 2D detection frameworks to 3D. They voxelize the ir-
regular point clouds to regular 3D grids and apply 3D CNN
detectors. In [4,18], the 3D data is first reduced to a bird’s-
eye view before proceeding to the rest of the pipeline. A
reduction in search space by first processing a 2D input was
demonstrated in Frustum PointNets [10].
Deep learning in point clouds. Recently we see a surge of
interest in designing deep network architectures suited for
point clouds. PointNet [11] and PointNet++ [12] are pio-
neering works which directly deal with raw point clouds and
learn local/global features for the downstream tasks. More



Figure 1. One-staged CenterPoint framework. Taken from [17].

recently, deep networks on point clouds are used to exploit
sparsity of the data by GSPN [16] and PointRCNN [13].

3. 3D Relocalization

Given reference scan S1 with ground truth detection and
query scan S2 with predicting detection of the same envi-
ronment with moving objects in it, 3D relocalization is de-
fined to find the transform matrices of moving objects from
S1 to S2 (See A.1). Unlike [8] where the camera calibration
matrix from S1 to S2 is predicted using Singular Value De-
composition (SVD), we take it as our prior knowledge. Dur-
ing inference time, after calibrating S2 to S1, we associate
the predicting detection of S2 and ground truth detection of
S1 in a greedy fashion. Specifically, corresponding boxes
in predicting results are selected based on nearest search of
their semantic classes and sizes and transform matrices are
calculated from the corresponding boxes.

4. Methods

4.1. CenterPoint

We choose the one-staged CenterPoint as our model.
Figure 1 shows the overall framework.
Backbone 3D. 3D feature encoding relies on a standard 3D
backbone. In particular, VoxelNet [18] is adopted - it first
encodes per-voxel feature by averaging learned point fea-
tures within the corresponding voxel then uses 3D sparse
convolution layers to extract map-view feature representa-
tion.
Backbone 2D. With learned map-view feature representa-
tion, 2D convolutional layers in 2D backbone are applied af-
ter compressing the height and mapping to bird’s eye view.
Dense head. The dense head’s goal is to produce a heatmap
peak at the center location of any detected object and regress
several object properties at the center-features of the objects
including a sub-voxel location refinement o ∈ R2, height-
above-ground hg ∈ R, the 3D size s ∈ R3, and a yaw
rotation angle α ∈ [−π, π).

4.2. VoteNet

Figure 2 illustrates the architecture of VoteNet [9]. The
entire model can be split into three parts: point cloud feature
learning, Hough voting [7] with deep networks and object
proposal and classification.
Point cloud feature learning. PointNet++ [12] is adopted
as the backbone. Given an input point cloud of size N × 3,
it is processed by several set-abstraction layers and feature
propagation (upsampling) layers with skip connections and
the output is a subset of the input points called seeds with
XYZ and an enriched feature vector.
Hough voting with deep networks. Given a set of seeds
with the size of M × (3 + C), with a C-dimensional fea-
ture vector, it forces seeds on the surface of the same object
closer to the corresponding object centroid to generate votes
with the same tensor representation as seeds, which makes
it easier to combine cues from different parts of the object
afterwards.
Object proposal and classification. Votes are clustered
through sampling and grouping and object proposals are
generated from vote clusters. The proposal is essentially
a multidimensional vector with an objectness score, bound-
ing box parameters and semantic classification scores.

5. Experiments
In this section, we firstly conduct experiments on

VoteNet to get a fair comparing baseline on 3RScan [8]. We
then test and tune CenterPoint on 3RScan and ScanNet [5]
to evaluate its performance.
Dataset. 3RScan is a novel dataset which features around
1.5K RGB-D scans of around 500 environments across mul-
tiple time steps. It is annotated with amodal oriented 3D
bounding boxes for 7 object categories.

ScanNetV2 is a richly annotated dataset of 3D recon-
structed meshes of indoor scenes. It contains around 1.2K
training examples and is annotated with semantic and in-
stance segmentation for 18 object categories. We aim to
predict axis-aligned bounding boxes because of the lack of



Figure 2. VoteNet architecture. Taken from [9].

Input seating table/cabinet bed/sofa appliances cushions items structure mAP
VoteNet Geo 60.0 24.0 60.2 35.9 18.9 3.8 7.1 30.0

original CenterPoint Geo 26.2 7.0 63.5 8.5 4.5 0.2 6.7 16.6
tuned CenterPoint Geo 66.4 22.5 68.1 26.3 33.9 7.5 13.0 34.0

Table 1. 3D object detection results on 3RScan val set. Evaluation metric is average precision with 3D IoU threshold 0.25.

Input mAP@0.25 mAP@0.5
DSS [6, 14] Geo + RGB 15.2 6.8

MRCNN 2D-3D [1, 6] Geo + RGB 17.3 10.5
F-PointNet [10] Geo + RGB 19.8 10.8

GSPN [16] Geo + RGB 30.6 17.7
3D-SIS [6] Geo + 1 view 35.1 18.7
3D-SIS [6] Geo + 3 views 36.6 19.0
3D-SIS [6] Geo + 5 views 40.2 22.5
3D-SIS [6] Geo 25.4 14.6
VoteNet [9] Geo 58.6 33.5

original CenterPoint Geo 29.3 13.6
tuned CenterPoint Geo 45.7 31.2

Table 2. 3D object detection results on ScanNetV2 val set. All
other numbers are extracted from [9].

Recall< 0.2m,20◦ MRE[deg] MTE[m]
VoteNet 7.94 9.32 0.080

CenterPoint 12.94 9.52 0.069

Table 3. 3D object relocalization results on 3RScan val set. We
evaluate the predicting rotation Rp and translation tp against the
ground truth annotation RGT and tGT . An instance will be judged
to be successfully aligned if the alignment error for the translation
t△ < 20cm and rotation R△ < 20◦. Numbers are reported in
terms of average % correct rotation and translation predictions.
MTE (Median Translation Error) is measured in meters and MRE
(Median Rotation Error) is in degrees.

oriented bounding box annotation in ScanNetV2.
Input and data augmentation. Input to VoteNet is a point
cloud of 20k points randomly sub-sampled from the entire
scene. In addition to XYZ coordinates, we also include a
height feature for each point indicating its distance from the

floor.
As for CenterPoint, the detection range is set to

[−6m, 6m] for X and Y axis, and [−3.5m, 3.5m] for Z axis
on 3Rscan, and [−3.5m, 3.5m] for X axis, [−6.5m, 5.5m]
for Y axis, and [−1.5m, 3.5m] for Z axis on ScanNetV2.
We don’t add height feature to the input in CenterPoint.

We augment the point clouds in the same way for both
networks including random flipping in both horizontal di-
rections, random rotation by Uniform[−5◦, 5◦] and random
scaling by Uniform[0.9, 1.1].
Implementation details. We keep the architecture of
VoteNet the same as the original one without any mod-
ifications. And for CenterPoint, we reduce the voxel
size from[0.1m, 0.1m, 0.2m] to [0.025m, 0.025m, 0.05m]
in both 3RScan and ScanNetV2. Other settings remain the
same as the original one. Training and inference details are
in appendix.

5.1. Main Results

In the beginning, we present 3D detection results of
VoteNet and CenterPoint on the validation split of 3RScan
as shown in Table 1. To get a better comparison, we also in-
clude results produced by original CenterPoint without any
modifications. As we can see, tuned CenterPoint outper-
forms original CenterPoint by a significant margin of 17.4
mAP and it is also better than VoteNet with an increase of
4.0 mAP. Table 1 also shows that CenterPoint on major cat-
egories (5 out of 7) produces higher AP scores. However,
predicting very small objects like ”items” and very thin ob-
jects like ”structure” (window, wall) is tough for it, with 7.5
AP and 13.0 AP respectively. Another per-category evalu-



Figure 3. Qualitative results of 3D object detection of CenterPoint in 3RScan and ScanNetV2. Above: 3RScan, Down: ScanNetV2,
Left: CenterPoint prediction, Right: ground truth.

ation with 3D IoU threshold of 0.5 is provided in the ap-
pendix.

While in ScanNetV2, we get the published results di-
rectly from [9] and compare with our two versions of Cen-
terPoint. As is shown in Table 2, the performance of tuned
CenterPoint with only geometry input is better than all other
methods except VoteNet. In particular, tuned CenterPoint
has a increase of 16.4 mAP at 0.25 IoU and 17.6 mAP at
0.5 IoU compared with the original version. A per-category
evaluation for ScanNet is provided in the appendix.

For 3D relocalization, we conduct the experiments with
tuned CenterPoint and VoteNet on 3RScan as is shown in
Table 3. We can observe that tuned CenterPoint outper-
forms VoteNet by a small margin.

5.2. Qualitative Results and Discussion

Figure 3 shows several representative examples of Cen-
terPoint detection results on 3RScan and ScanNet scenes.

More visualizations are in appendix.
Also, we try adding similarity loss in VoteNet with more

details in appendix.

6. Conclusion

In this work, we adapt outdoor-targeted CenterPoint to
two indoor datasets. Besides, we also test and tune VoteNet
in 3RScan to get a fair comparison. Also, we conduct
relocalization experiments on CenterPoint and VoteNet in
3RScan. We observe that CenterPoint with some modifi-
cations can perform quite well in indoor scenes. However,
there is still some limitation. One is that we have difficul-
ties dealing with very small and thin objects. The other one
is that it is difficult to predict accurately if there are many
overlapping bounding boxes.

In the future work, we will try to tackle above two prob-
lems and use the second stage and tracking part of Center-
Point in indoor scenes.
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A. Appendix

This appendix provides 3D relocalization visualization
example A.1, training and inference details A.2, additional
per-category results on 3RScan and ScanNet A.3, visual-
izations on CenterPoint and VoteNet A.4 and more analysis
on similarity experiments A.5.

A.1. 3D Relocalization Example

Here we display a process of relocalization in Figure 4.
We want to robustly estimate the 6DoF pose of changed
rigid object instances from a query scan to a reference scan
of the same environment.

A.2. Training and Inference

Training the network. We train VoteNet from scratch with
an Adam optimizer, batch size 8 and an initial learning rate
of 0.001. The learning rate is decreased by 2× after 80
epochs then decreased by 2.5× after 120 epochs and de-
creased by 3× after 160 epochs. Training the model to con-
vergence on one GTX1060 GPU takes around 5 hours on
3RScan.

For CenterPoint, we train the entire network from scratch
with an Adam-one-cycle optimizer, batch size 8 and a peak
learning rate of 0.003 as well as a weight decay of 0.01.
Training the model to convergence on one GTX1060 GPU
takes around 10 hours on both 3RScan and ScanNetV2.

There are no additional inputs or outputs for relocaliza-
tion task - the training pipeline is unchanged.
Inference. The output of two models are both post-
processed by a 3D NMS module with an IoU threshold of
0.25. The evaluation follows the same protocol as in [14]
using mean average precision. Inference for relocalization
is shown in 3.

A.3. 3RScan and ScanNet Per-class Evaluation

Table 4 reports per-class average precision on 7 classes
of 3RScan with 0.5 box IoU threshold. In addition, Ta-
ble 5 and Table 6 present per-class average precision on 18
classes of ScanNet with 0.25 and 0.5 box IoU threshold,
respectively.



seating table/cabinet bed/sofa appliances cushions items structure mAP
VoteNet 26.0 6.5 14.5 4.2 0.2 0.14 0.14 7.4

original CenterPoint 4.6 0.6 9.4 0.4 0.12 0.0 1.0 2.3
tuned CenterPoint 20.8 3.84 37.9 1.2 0.38 0.0 1.8 9.4

Table 4. 3D object detection results on 3RScan val set. Evaluation metric is average precision with 3D IoU threshold 0.5.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
3DSIS 5views [6] 19.8 69.7 66.2 71.8 36.1 30.6 10.9 27.3 0.0 10.0 46.9 14.1 53.8 36.0 87.6 43.0 84.3 16.2 40.2

3DSIS Geo [6] 12.8 63.1 66.0 46.3 26.9 8.0 2.8 2.3 0.0 6.9 33.3 2.5 10.4 12.2 74.5 22.9 58.7 7.1 25.3
VoteNet [9] 36.3 87.9 88.7 89.6 58.8 47.3 38.1 44.6 7.8 56.1 71.7 47.2 45.4 57.1 94.9 54.7 92.1 37.2 58.6

original CenterPoint 6.6 76.8 57.6 71.1 32.3 22.1 10.2 18.8 0.1 28.8 41.4 3.1 19.2 8.7 72.2 1.2 50.7 6.1 29.3
tuned CenterPoint 32.6 82.1 80.2 86.4 45.5 45.9 29.4 39.3 7.9 23.7 57.6 32.9 41.7 21.1 77.9 37.1 42.8 38.1 45.7

Table 5. 3D object detection results on ScanNetV2 val set. Evaluation metric is average precision with 3D IoU threshold 0.25.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
3DSIS 5views [6] 5.7 50.3 52.6 55.4 22.0 10.9 0.0 13.2 0.0 0.0 23.6 2.6 24.5 0.8 71.8 8.9 56.4 6.87 22.5

3DSIS Geo [6] 5.1 42.2 50.1 31.8 15.1 1.4 0.0 1.4 0.0 0.0 13.7 0.0 2.63 3.0 56.8 8.7 28.5 2.6 14.6
VoteNet [9] 8.1 76.1 67.2 68.8 42.4 15.3 6.43 28.0 1.25 9.52 37.5 11.6 27.8 10.0 86.5 16.8 78.9 11.7 33.5

original CenterPoint 0.2 55.6 21.5 56.0 13.4 2.9 1.0 5.9 0.0 3.6 11.3 0.0 5.8 0.0 41.6 0.0 26.4 0.3 13.6
tuned CenterPoint 11.9 57.3 68.1 57.1 34.7 29.6 6.2 27.0 1.2 5.5 41.0 5.3 41.7 8.0 72.6 19.2 39.6 25.1 31.2

Table 6. 3D object detection results on ScanNetV2 val set. Evaluation metric is average precision with 3D IoU threshold 0.5.

A.4. More Visualizations

Figure 5 presents additional visualizations of Center-
Point detection results on 3RScan and its comparisons with
VoteNet. And Figure 6 shows more visualizations of Cen-
terPoint detection results on ScanNetV2.

A.5. Analysis on Similarity Experiments

mAP@0.25 mAP@0.5
original VoteNet 30.0 7.4

VoteNet with similarity loss 27.7 6.8

Table 7. mAP comparison on 3RScan val set between VoteNet w/o
similarity loss and w/ similarity loss.

Inspired by SimSiam [3], we want the local features of
the same location of different scans belonging to the same
environment to be consistent. But unlike pre-training set-
tings of SimSiam, we try training from end to end. We test
this idea by combining it with VoteNet. Given seeds of two
different scans S1, S2 from the same environment produced
by backbone (PointNet++), we add one projection MLP and
one prediction MLP where the output of the same location
of two scans is defined as z1, z2, p1 and p2, respectively.
We add one symmetrized loss defined as:

L =
1

2
D(p1, SG(z2)) +

1

2
D(p2, SG(z1)), (1)

where D represents negative cosine similarity [3] and SG
means a stop-gradient operation [3]. Projection MLP con-
tains 2 layers with batch normalization for each layer and

ReLU for the first layer. And prediction MLP contains 2
layers with batch normalization for the first layer and ReLU
for the first layer. Table 7 shows the AP scores comparison
between original VoteNet and VoteNet with similarity loss
on 3RScan dataset. However, it turns out that our end-to-
end training setting doesn’t really help.



Figure 4. Relocalization process.

Figure 5. Comparisons of 3D object detection of CenterPoint and VoteNet in 3RScan . Left: CenterPoint prediction, Middle:VoteNet
prediction, Right: ground truth.



Figure 6. Visualizations of 3D object detection of CenterPoint in ScanNetV2. Left: CenterPoint prediction, Right: ground truth.
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